
2020-11-01

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Operator overloading

2
Operator overloading

Outline

• In this lesson, we will:

– Describe operator overloading

– Look at how we can overload operators for classes such as

• Three-dimensional arrays

• Rational numbers

• Our array class

– Describe how to allow std::cout to print instances of our classes

– Be focusing on reusing code, rather than implementingnew code for
essentially identical functionality

3
Operator overloading

Functions on vectors

• In the previous topic, we described classes for:

– 3-dimensional vectors

– Rational numbers

– Arrays

– Pair

4
Operator overloading

Using vectors

• Contrast the use of integers and rational numbers:

int main() {

int m{ 15 };

int n{ 17 };

Rational p{ 15, 1 };

Rational q{ 17, 1 };

std::cout << "m + n = " << (m + n) << std::endl;

std::cout << "p + q = "

<< to_string(add(p, q)) << std::endl;

std::cout << "-m = " << (-m) << std::endl;

std::cout << "-p = "

<< to_string(negate(p)) << std::endl;

return 0;

}

1 2

3 4

2020-11-01

2

5
Operator overloading

Using vectors

• Wouldn’t this be nice?

int main() {

int m{ 15 };

int n{ 17 };

Rational p{ 15, 1 };

Rational q{ 17, 1 };

std::cout << "m + n = " << (m + n) << std::endl;

std::cout << "p + q = " << (p + q) << std::endl;

std::cout << "-m = " << (-m) << std::endl;

std::cout << "-p = " << (-p) << std::endl;

return 0;

}

6
Operator overloading

Functions on vectors

• What we need is a way to tell the compiler:

– If you have rational + rational, then call an appropriate function

– If you have –rational, then call a different appropriate function

• This is done through operator overloading

Rational operator+(Rational const &p, Rational const &q);

• If the left and right operands of a binary “+” are instances of the
class Rational, then call this function

Rational operator+(Rational const &p, Rational const &q) {

return Rational{ p.numer_*q.denom_ + q.numer_*p.denom_,

p.denom_*q.denom_ };

}

7
Operator overloading

Operator overloading

• For almost every operator in C++,
that operator can be overloaded for new operands

– This is true for all arithmetic, comparison, logical, bitwise,
bit-shifting, assignment and auto-assignment operators

– The few that cannot be overloaded such as :: or .

8
Operator overloading

Operators on vectors

• Thus, all the previous functions we implemented for vectors
could implemented using operator overloading:

Vector_3d operator+(Vector_3d const &u, Vector_3d const &v);

Vector_3d operator*(Vector_3d const &u, double const s);

Vector_3d operator*(double const s, Vector_3d const &u);

bool operator==(Vector_3d const &u, Vector_3d const &v);

• Important: The compiler knows NOTHING about arithmetic

properties such as commutativity or symmetry

– You must implement all variations such as su or us

5 6

7 8

2020-11-01

3

9
Operator overloading

Operators on vectors

• To be fair, we should also implement any other operator that
may a user may use

// Unary + and -

Vector_3d operator+(Vector_3d const &u);

Vector_3d operator-(Vector_3d const &u);

// Binary – and /

Vector_3d operator-(Vector_3d const &u, Vector_3d const &v);

Vector_3d operator/(Vector_3d const &u, double const s);

// Binary !=

bool operator!=(Vector_3d const &u, Vector_3d const &v);

10
Operator overloading

Operators on vectors

• To be fair, we should also implement any other operator that
may a user may use

// Unary + and -

Vector_3d operator+(Vector_3d const &u);

Vector_3d operator-(Vector_3d const &u);

// Binary – and /

Vector_3d operator-(Vector_3d const &u, Vector_3d const &v);

Vector_3d operator/(Vector_3d const &u, double const s);

// Binary !=

bool operator!=(Vector_3d const &u, Vector_3d const &v);

11
Operator overloading

Operators on vectors

• One rule we will focus on is the idea of reuse:

– If you can implement something using a function already written, do so

Vector_3d operator-(Vector_3d const &u) {

return Vector_3d{ -u.x_, -u.y_, -u.z_ };
}

Vector_3d operator-(Vector_3d const &u, Vector_3d const &v) {

return u + (-v);
}

bool operator==(Vector_3d const &u, Vector_3d const &v) {
return (u.x_ == v.x_) && (u.y_ == v.y_) && (u.z_ == v.z_);

}

bool operator!=(Vector_3d const &u, Vector_3d const &v) {
return !(u == v);

}

12
Operator overloading

Operators on vectors

• What not to overload?

– Can you divide a scalar by a vector?

Vector_3d operator/(double const s, Vector_3d const &u);

– What should this do?

double operator*(Vector_3d const &u, Vector_3d const &v);

Vector_3d operator*(Vector_3d const &u, Vector_3d const &v);

• Is it the inner product, or is it the cross product?

• For clarity, this author would leave both as named functions:

inner(…) and cross(…)

– Should u + 2.5 add 2.5 to each entry of the vector u?

Vector_3d operator+(Vector_3d const &u, double const s);

Vector_3d operator+(double const s, Vector_3d const &u);

9 10

11 12

2020-11-01

4

13
Operator overloading

Operators on vectors

• You can also overload all the automatic assignment operators:

Vector_3d &operator+=(Vector_3d &u, Vector_3d const &v);

Vector_3d &operator-=(Vector_3d &u, Vector_3d const &v);

Vector_3d &operator*=(Vector_3d &u, double const s);

Vector_3d &operator/=(Vector_3d &u, double const s);

14
Operator overloading

Operators on vectors

• In each of these, we could reuse code we have already authored:

Vector_3d &operator+=(Vector_3d &u, Vector_3d const &v) {

u = u + v;

return u;

}

– One critical point: the automatic assignment operators must
return the left-hand operand by reference

15
Operator overloading

Operators on vectors

• What is most desirable, perhaps, however, is to get the vector class
to work with std::cout

std::cout << u;

– The class of std::cout is std::ostream

std::ostream &operator<<(ostream &out, Vector_3d const &u) {

out << "(" << u.x_ << ", " + u.y_ + ", " + u.z_ + ")";

return out;

}

– Inside, treat the parameter out as if you would std::cout

– The argument std::cout is passed by reference,
and returned by reference

16
Operator overloading

Rational number class

• Next, let’s look at overriding operators for our rational number class

class Rational {

public:

int numer_;

int denom_;

};

– There are many more operations that can be performed on
rational numbers, including all arithmetic operations but also
comparison operators

13 14

15 16

2020-11-01

5

17
Operator overloading

Rational number class

• Again, reuse is very powerful here, for if one or two functions are
authored correct, so are the rest:

bool operator==(Rational const &p, Rational const &q) {

return p.numer_*q.denom_ == q.numer_*p.denom_;

}

bool operator!=(Rational const &p, Rational const &q) {

return !(p == q);

}

18
Operator overloading

Rational number class

• Here is comparing if p < q:

bool operator<(Rational const &p, Rational const &q) {

if (p.denom_*q.denom_ > 0) {

return p.numer_*q.denom_ < q.numer_*p.denom_;
} else {

return p.numer_*q.denom_ > q.numer_*p.denom_;
}

}

bool operator<=(Rational const &p, Rational const &q) {

return (p < q) || (p == q);

}

bool operator>(Rational const &p, Rational const &q) {

return !(p <= q);

}

bool operator>=(Rational const &p, Rational const &q) {

return !(p < q);

}

19
Operator overloading

Rational number class

• As for std::cout,

– We always want to see printed 3/5 or -2/5, and not -3/-5 or 2/-5
std::ostream operator<<(std::ostream &out, Rational const &p) {

if (p.denom_ < 0) {

out << -p.numer_ << "/" << -p.denom_;
} else {

out << p.numer_ << "/" << p.denom_;

}

}

– Also, should we print integer rational numbers as integers
without a denominator?

• For example, 1 instead of 3/3,

-5 instead of -5/1

20
Operator overloading

Array class

• For the array class, we can get it to print using std::cout:

std::ostream &operator<<(std::ostream &out, Array const &array) {

if ((array.array_ == nullptr) || (array.capacity_ == 0)) {

out << "{}";

} else {

out << "{" << array.array_[0];

for (std::size_t k{1}; k < array.capacity_; ++k) {

out << ", " << array.array_[k];

}

out << "}";

}

return out;

}

17 18

19 20

2020-11-01

6

21
Operator overloading

Pair class

• For the Pair class, we may consider overloading == and != if this

was considered appropriate

// Class declarations

class Pair;

// Class definitions

class Pair {

public:

std::size_t first_;

std::size_t second_;

};

22
Operator overloading

Complex numbers

• Now, in your linear algebra and calculus courses,
you have likely already been exposed to complex numbers

– How could you implement a complex number class?

• What operators could you implement?

• What additional functions would be required?

23
Operator overloading

Summary

• Following this lesson, you now

– Have seen numerous examples of operator overloading

– Understand that operator overloading can make programming
much more intuitive

– Specifically understand how to extend the printing capabilities of
std::cout to print objects from classes you have authored

24
Operator overloading

References

[1] https://en.wikipedia.org/wiki/C++_classes

[2] https://en.wikipedia.org/wiki/Operator_overloading

21 22

23 24

2020-11-01

7

25
Operator overloading

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and

accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

26
Operator overloading

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The

material in it reflects the authors’ best judgment in light of the

information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the

responsibility of such parties. The authors accept no responsibility for

damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for

which it was intended.

25 26

